
Detection of cryptographic algorithms with grap

Detection of cryptographic algorithms with grap

Léonard Benedetti benedetti@mlpo.fr
Aurélien Thierry aurelien.thierry@airbus.com
Julien Francq julien.francq@airbus.com

GreHack 2017, November 17th



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Detection of cryptographic algorithms?

What is it?

Detect, identify and locate a cryptographic operation in a program.

What is it for?

Useful in reverse-engineering

I Time saving

I Identification of interesting areas

I Malware analysis

2 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Malware analysis: ransomware

Ransomware:

I Modern cryptography: symmetric (file encryption) + asymmetric (key management)
I Symmetric algorithms:

I Block ciphers: AES, RC5. . .
I Stream ciphers: Salsa20, ChaCha20, RC4. . .

I Asymmetric algorithms:
I Key management: RSA, DH, ECDH (e.g. NIST curves, X25519). . .

Identification of crypto algorithms within binaries:

I Automatic feature detection: “This program uses AES”

I Assist a reverser: “This function implements ChaCha20”

I Extract cryptographic material: encryption keys. . .

3 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Existing approaches

Constant detection and byte-level pattern matching (FindCrypt2, Signsrch, IDAScope,
IDA FLIRT, YARA)

I Very quick (AES, SHA1, SHA2. . . )

I Easy to define patterns, hard to “get them right”

I Some algorithms don’t have constants (RC4, Salsa20, ChaCha20. . . )

I Constant / byte modification or very light obfuscation � no detection

Function evaluation against known test values (Sybil, Aligot)

I Very precise

I Moderately difficult to write tests

I Slow

I Algorithm variant � no detection

Approach based on disassembled instructions and control flow graph (CFG)?

4 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

A quick example

ChaCha20

I Stream cipher, designed in 2008 by Daniel J. Bernstein

I Variant of Salsa20, by the same author

I Fast with a high level of security

5 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

ChaCha20

ChaCha20 encryption (LibreSSL compiled with gcc -O0)

I Repetition of ARX crypto: add, xor, rol

Demo: simple detection with grap

I grap ”add->*->xor->rol” x64 libcrypto.so.37.0.0 O0

I Easy to prototype patterns

I The inferred pattern can be inspected (-v option)

Demo: IDA plugin

I Select the interesting areas directly in IDA

I Produce quickly usable patterns

I Apply transformations to make them generic

6 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

ChaCha20: more generic grap pattern

I Node repetition

I Conditions on opcode

I Variants: mov or lea

digraph ARX crypto simple {
add [cond=”opcode is add”, repeat=+]
mov1 [cond=”opcode is mov or opcode is lea”, repeat=*]
xor [cond=”opcode is xor” repeat=+]
mov2 [cond=”opcode is mov or opcode is lea”, repeat=*]
rol [cond=”opcode is rol” repeat=+]
mov3 [cond=”opcode is mov or opcode is lea”, repeat=*]

add −> mov1
mov1 −> xor
xor −> mov2
mov2 −> rol
rol −> mov3
}

7 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

grap overview

8 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

grap project

Patterns:

I grap ”add->*->xor->rol” x64 libcrypto.so.37.0.0 O0

I grap pattern.grapp binary.exe

I pattern.grapp: DOT1 file

I Standalone tool (CLI) with a Capstone-based disassembler (x86 and x86 64 only)

I IDA plugin: visually create and match patterns from IDA

I python bindings

1The DOT Language: http://www.graphviz.org/content/dot-language
9 / 33

http://www.graphviz.org/content/dot-language


Introduction First example: ChaCha20 grap AES Discussion Conclusion

grap: detect graph patterns within binaries

How to quickly match subgraphs?

Control flow graphs:
I Children are ordered: call 0x4022e0

I Child 1: next instruction (following address)
I Child 2: target instruction (address: 0x4022e0)

I Nodes have at most 2 children

� Quick (polynomial time) algorithm for graph matching (see paper)

10 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

grap: usage

https://github.com/AirbusCyber/grap

Applications:

I Malware families: detection, classification and feature extraction (REcon BRX 2017)

I Crypto detection

Build & install:

I IDA 6.95 and IDA 7.0 (32 and 64 bits) supported

I Windows: Precompiled release

I Linux: cmake + make + sudo make install

I Linux: tested on Ubuntu LTS (16.04) and Debian stable (9.1.0)

11 / 33

https://github.com/AirbusCyber/grap


Introduction First example: ChaCha20 grap AES Discussion Conclusion

Designing cryptographic patterns
Example with AES

12 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

I Block cipher, designed in 2000 by Daemen and Rijmen

13 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

Key schedule

I Round keys are derived from the secret key

14 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

AddRoundKey

I The state is combined with the round key using XOR

15 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

SubBytes

I The state is passed through a S-Box

16 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

ShiftRows

I Cyclically shifts each row of the state

17 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

MixColumns

I Linear transformation in GF(28)

(
a3x

3 + a2x
2 + a1x + a0

)
×

(
3x3 + x2 + x + 2

)
mod x4 + 1

18 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

AES

I Very specific structure

I Characteristic cyclically shifts in ShiftRows

I Arithmetic in MixColumns

19 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Design process: example with AES

1. Choosing an implementation in particular
I LibreSSL

2. Compilation in various contexts
I GCC, Clang
I x86 and x64
I Several levels of optimizations (O0, O1, O2. . . )

20 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Design process: example with AES

3. Assembly code study
I Search for invariants
I Form of the structure
I Analysis of semantics

4. Pattern prototyping
I Die and retry approach
I Attempt to generalize

21 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Final AES pattern

[InitialRound] *

* shr, mov, xor * shr, mov, xor * shr, mov, xor * shr, mov, xor * [condition on the number of rounds]

*

*

shr, mov, xor * and *, 0xff000000

shr, mov, xor * shr, mov, xor * shr, mov, xor * shr, mov, xor *

[end of the basic block]

22 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Final AES pattern

[InitialRound] *

* shr, mov, xor * shr, mov, xor * shr, mov, xor * shr, mov, xor * [condition on the number of rounds]

*

*

shr, mov, xor * and *, 0xff000000

shr, mov, xor * shr, mov, xor * shr, mov, xor * shr, mov, xor *

[end of the basic block]

23 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Results on AES

I Effective pattern on several reference implementations

I Detection of variants (independent of the constants)

I Strongly based on the structure of the algorithm

I AES-NI detection

Demo

24 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Difficulties and limitations with cryptographic patterns

I Designing effective and generic patterns is not always possible
I Rely on semantics and topology of the CFGs, if neither is generic, the patterns won’t be
I Examples: RC4, SHA-1, SHA-2

I Cryptographic code is protean
I Use specialized instructions: specialized opcodes (AES-NI) or vectorization (SSE, AVX, . . . )
I Ciphers can be integrated directly into other routines (mode of operation, protocols)
I May be absent and left to the OS (e.g. CryptoAPI)

I Design and prototyping may take time

25 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Discussion

26 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Performance

Detect AES and ARX patterns on libsodium and LibreSSL:

grap -q patterns/crypto/ *

27 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Performance

Detect AES and ARX patterns on libsodium and LibreSSL:

grap -q patterns/crypto/ *

libsodium.so.18.2.0.grapcfg - AES NI (106), ARX crypto (3)
x64 libcrypto.so.41.1.0 clang O3.grapcfg - ARX crypto (64), LibreSSL AES compact (1)
x64 libcrypto.so.37.0.0 O3.grapcfg - ARX crypto (12), LibreSSL AES common (1)
x64 libcrypto.so.37.0.0 O0.grapcfg - ARX crypto (58), LibreSSL AES common (2)
x86 libcrypto.so.37.0.0 O0.grapcfg - ARX crypto (58), LibreSSL AES common (2)

27 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Performance

Detect AES and ARX patterns on libsodium and LibreSSL:

grap -q patterns/crypto/ *

I Overall: 25s (multithreaded)
I Disassembly: 20s
I Matching: 5s

Library Compiler Disassembly time CFG size Matching time

libsodium 1.0.12 GCC 2.1 seconds 51,866 instructions 0.6 second
LibreSSL 2.5.4 x64 Clang -O3 8.0 seconds 172,293 instructions 1.5 seconds
LibreSSL 2.3.4 x64 GCC -O3 7.2 seconds 191,307 instructions 1.6 seconds
LibreSSL 2.3.4 x64 GCC -O0 10 seconds 318,160 instructions 2.6 seconds
LibreSSL 2.3.4 x86 GCC -O0 10 seconds 346,416 instructions 2.9 seconds

27 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Pattern detection on malware

Malware name Symmetric crypto Implementation Detected Comment

Sage ChaCha20 custom/static Yes ARX
Remsec (Sauron) RC5 custom/static Yes ARX
PlugX (dropper) AES AES-NI Yes
CozyDuke AES AES-NI Yes
CryptoLocker AES CryptoAPI No
Locky AES CryptoAPI No
Spora AES CryptoAPI No
WannaCry AES CryptoAPI No
NotPetya AES+Salsa20 CryptoAPI+custom/static No Obfuscated
Petya Salsa20 custom/static No Obfuscated

I 10 samples: 3 seconds for disassembly + matching

I ARX pattern is useful

I AES: dynamic call to CryptoAPI is predominant

28 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Detection based on control flow graphs

Complementary approach:

I Constant detection: byte level (YARA)

I Control flow graph: implementation level

I Function evaluation: algorithm level (Sybil)

I Implementation / CFG modification � no detection

29 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Conclusion

30 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Conclusion

Pros

I Does not rely on constant detection

I Reliable implementation-based detection on several algorithms

I Static analysis

I Quite fast

I Easy for the analyst to quickly create and use patterns (thanks to the IDA plugin)

I Suitable for use in scripts or rules (e.g. for malware family identification)

Cons

I Designing generic patterns is not always possible

I Creating a generic pattern can be time consuming

I Not very effective against serious obfuscation

31 / 33



Introduction First example: ChaCha20 grap AES Discussion Conclusion

Conclusion

Complementary approach to crypto detection

I Functional and useful

I IDA plugin to write patterns easily

I Open source (MIT License): https://github.com/AirbusCyber/grap

Perspectives:

I More algorithms

I More tests on malware (quantitative analysis)

I Improve grap with awesome features, like “metapatterns”

32 / 33

https://github.com/AirbusCyber/grap


Introduction First example: ChaCha20 grap AES Discussion Conclusion

Thank you!

Léonard Benedetti (@mlpo FS)
Aurélien Thierry (@yaps8)
Julien Francq

https://github.com/AirbusCyber/grap

33 / 33

https://github.com/AirbusCyber/grap

	Introduction
	First example: ChaCha20
	grap
	AES
	Discussion
	Conclusion

