
Protecting Data

on Smartphones & Tablets

with Trusted Computing

Stefan Saroiu

Microsoft Research (Redmond)



Smartphones have displaced PCs

as the primary computing device



Smartphones Store Sensitive Data



Sensor Readings Have Value



Implications

▪ High value of smartphone data 

creates incentives for “bad” guys:

▪ 3rd-parties want to steal data

▪ 1st-parties want to fabricate/alter data

Data is under attack from 

malware, apps, or users



Smartphones and Tablets Are 

Easily Lost or Stolen



Implications

▪ Data loss due to device loss is common

▪ Attackers have easy access to device

▪ Memory-based attacks are inexpensive
▪ Cold-boot, bus snooping/monitoring, DMA

Cannot afford to neglect

physical attacks 



This Talk: Two Approaches

1. Software abstractions for mobile devices:

▪ Firmware-TPM (trusted platform module)

▪ Trusted sensors

▪ Cloud-TPM: cross-device TPM-protection

2. New systems leveraging trusted hardware

▪ Sentry: protect data against memory attacks

▪ TLR: small secure runtime at the language-level



Acknowledgements

▪ Microsoft Research researchers & engineers:
▪ Alec Wolman, Himanshu Raj, and many others (next slide)

▪ Microsoft Research interns:
▪ Patrick Colp (U. of British Columbia)

▪ He Liu (U. of California at San Diego, now with Google)

▪ Chen Chen (ETH Zurich)

▪ Nuno Santos (MPI-SWS, now with U. of Lisbon)

▪ External collaborators:
▪ Jiawen Zhang, James Gleeson, Sahil Suneja, Eyal de Lara

U. of Toronto

▪ Krishna Gummadi (MPI-SWS)

▪ Rodrigo Rodrigues (MPI-SWS, now with IST, Portugal)



fTPM: A Software-only 

Implementation of a TPM Chip

Himanshu Raj, Stefan Saroiu, Alec Wolman, Ronald Aigner, 

Jeremiah Cox, Paul England, Chris Fenner, 

Kinshuman Kinshumann, Jork Loeser, Dennis Mattoon,

Magnus Nystrom, David Robinson, Rob Spiger, Stefan Thom, David Wooten

Microsoft

(published at USENIX Security 2016)



Motivation

▪ Many systems in industry & research rely on TPMs

▪ Bitlocker, trusted sensors, Chrome OS, etc…

▪ Challenge: Smartphones & tablets lack TPMs today

▪ TPM: never designed to meet space, cost, power constraints

▪ Observation: }
?



Big Problem

These CPU features omit several secure

resources found on trusted hardware



Research Question

Can we overcome these limitations 

to build systems whose security ~trusted hardware?

Answer: Yes

Contributions:

• 3 approaches to overcome TrustZone’s limitations

(lessons relevant to SGX also)

• Security analysis of fTPM vs TPM chips

• fTPM shipped millions of Microsoft Surface & WP



Outline

▪ Motivation

▪ Background on TPM

▪ ARM TrustZone and its shortcomings

▪ High-level architecture & threat model

▪ Overcoming TrustZone limitations: three approaches

▪ Performance evaluation

▪ Conclusions



What are TPMs?

▪ Hardware root of trust offering:

▪ Strong machine identity

▪ Software rollback prevention

▪ Secure credentials store

▪ Software attestation



What are TPMs good for?

▪ Shipped Products by Industry:

▪ Protects “data-at-rest” (Google, Microsoft)

▪ Prevents rollback (Google)

▪ Virtual smart cards (Microsoft)

▪ Early-Launch Anti-Malware (Microsoft)

▪ Research:

▪ Secure VMs for the cloud [SOSP’11]

▪ Secure offline data access [OSDI ‘12]

▪ Trusted sensors for mobile devices [MobiSys ’11, SenSys ‘11]

▪ Cloaking malware [Sec ‘11]



TPM: 1.0  1.1  1.2  2.0

▪ Late 1999: TCPA is formed (IBM, HP, Intel, Microsoft, …)

▪ 2001: TPM specification 1.0 is released
▪ Never adopted by any hardware AFAIK

▪ Late 2001: TPM 1.1 is released

▪ 2002: IBM Thinkpad T30 uses first discrete TPM chip

▪ 2003: TCPA morphs into TCG

▪ 2007: pin reset attack

▪ 2008: TPM 1.2
▪ Very popular, many hardware vendors built chips

▪ 2014: TPM 2.0



New in TPM 2.0

▪ Newer cryptography

▪ TPM 1.2: SHA-1, RSA

▪ TPM 2.0: SHA-1, RSA, SHA-256, ECC

▪ TPM 2.0 provides a reference implementation

▪ “the code is the spec”

▪ Much more flexible policy support

▪ Read this as “more (useful) bells and whistles”



Outline

▪ Motivation

▪ Background on TPM

▪ ARM TrustZone and its shortcomings

▪ High-level architecture & threat model

▪ Overcoming TrustZone limitations: three approaches

▪ Performance evaluation

▪ Conclusions



Secure Monitor Layer (software)

Normal World (NW) Secure World (SW)

ARM Hardware



ARM Hardware

Booting Up



Secure Monitor Layer (software)

ARM Hardware

Booting Up



Secure Monitor Layer

ARM Hardware

Booting Up

Allocates memory
Restricts its access to Secure World-only
More setup…



Secure Monitor Layer

ARM Hardware

Booting Up Secure World (SW)



Secure Monitor Layer

ARM Hardware

Booting Up Secure World (SW)



Secure Monitor Layer

Normal World (NW)

ARM Hardware

Secure World (SW)



ARM TrustZone Properties

▪ Isolated runtime that boots first

▪ Curtained memory

▪ Ability to map interrupts delivered to Secure World

▪ Secure monitor dispatches interrupts



ARM TrustZone Limitations

Lack of virtualization Lack of accessibility



Outline

▪ Motivation

▪ Background on TPM

▪ ARM TrustZone and its shortcomings

▪ High-level architecture & threat model

▪ Overcoming TrustZone limitations: three approaches

▪ Performance evaluation

▪ Conclusions



High-Level architecture

ARM SoC Hardware

Commodity OS
Linux/Windows

fTPM

TEE Monitor

Normal World Secure World

TEE Dispatcher

Other secure services

TEE Runtime

▪ TEE: trusted execution environment (small codebase)

▪ Monitor, dispatcher, runtime

▪ Most hardware resources mapped to Normal World

▪ For better perf.



Threat Model: What Threats are In-Scope?

Goals fTPM TPM chip

Malicious software
(e.g., malware, compromised OS)

Time-based side-channel

Cache-based side-channel

Denial-of-Service

Power analysis-based side-channel

Memory attacks
(e.g., coldboot, bus sniffing, JTAG)

See “Memory Attacks” (ASPLOS 2015)



Outline

▪ Motivation

▪ Background on TPM

▪ ARM TrustZone and its shortcomings

▪ High-level architecture & threat model

▪ Overcoming TrustZone limitations: three approaches

▪ Performance evaluation

▪ Conclusions



ARM TrustZone Limitations

Helpful observation: huge ARM eco-system out there

▪ eMMC controller present on many ARM SoCs

▪ Has provisions for trusted storage

▪ Secure fuses: write-once, read-always registers

▪ Can act as “seed” for deriving crypto keys

▪ Entropy for TrustZone can be added easily



ARM Eco-system Offers eMMC

▪ eMMC controllers can setup one partition as 

Replay-Protected Memory Block (RPMB)

▪ RPMB primitives:

▪ One-time programmable authentication keys:

▪ fTPM uses “seed” from secure fuse to generate auth. keys

▪ fTPM writes auth. keys to eMMC controller upon provisioning

▪ Authenticated reads and writes (uses internal counters)

▪ Nonces



ARM TrustZone Limitations

eMMC & Secure fuses

Entropy

Timer & changed semantics of TPM commands



Three Approaches

1. Provision additional trusted hardware

2. Make design compromises

3. Change semantics of TPM commands

Do not affect TPM’s security!



Problem: Long-Running Commands

▪ Design requirements: 

▪ Code running in secure world must be minimal

▪ e.g., TEE lacks pre-emptive scheduler

▪ fTPM commands cannot be long-lived

▪ Commodity OS “freezes” during fTPM command

▪ Creating RSA keys can take 10+ seconds on slow 

mobile devices!!!



Solution: Cooperative Checkpointing

…
…
Oops, it’s been a long time

Secure WorldNormal World



Three Approaches

1. Provision additional trusted hardware

2. Make design compromises

3. Change semantics of TPM commands

Do not affect TPM’s security!



Background: TPM Unseal

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

Lockout
Period

TPM
w/ storage



Problem: Dark Periods

▪ During dark periods:

▪ Problem: storage unavailable

▪ Danger: TPM Unseal commands not safe

▪ Example of dark period: During boot:

▪ Firmware (UEFI) finished running and unloaded

▪ OS loader is running (OS not fully loaded)



Possible Attack during Dark Period

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

TPM
without
storage

Guess PIN 
4th timeReboot

Dark period
entered here



Solution: Dirty Bit

▪ Write dirty bit to storage before enter dark period

▪ If dark period exited, dirty bit is cleared

▪ If machine reboots during dark period, bit remains dirty

▪ Possibility #1: Legitimate user reboots machine

▪ Possibility #2: Attacker attempts to guess PIN

▪ Solution: Upon fTPM bootup, if bit dirty enter lockout



Dirty Bit Stops Attack

Guess PIN
1st time

Failed 
Attempts++

Guess PIN
2nd time

Failed 
Attempts++

Guess PIN
3rd time

Failed 
Attempts++

fTPM

Reboot

Lockout
Period

Set Dirty
Bit

Dark period
entered here



Outline

▪ Motivation

▪ Background on TPM

▪ ARM TrustZone and its shortcomings

▪ High-level architecture & threat model

▪ Overcoming TrustZone limitations: three approaches

▪ Performance evaluation

▪ Conclusions



Methodology

fTPM1 1.2 GHz Cortex-A7

fTPM2 1.3 GHz Cortex-A9

fTPM3 2 GHz Cortex-A57

fTPM4 2.2 GHz Cortex-A57

dTPM1

dTPM2

dTPM3

▪ Instrumented and measured various TPM commands

▪ Create RSA keys, seal, unseal, sign, verify, encrypt, decrypt



Result: fTPMs much faster than dTPMs

RSA-2048 (w/ OAEP & SHA-256)

0

200

400

600

800

1,000

fTPM1 fTPM2 fTPM3 fTPM4 dTPM1 dTPM2 dTPM3

C
o

m
m

an
d

 D
u

ra
ti

o
n

 
(m

ill
is

e
co

n
d

s)

Encrypt

Decrypt



fTPM: Conclusions

▪ fTPM leverages ARM TrustZone to build TPM 2.0 

running in-firmware

▪ Three approaches to build fTPM:

▪ Additional hardware requirements

▪ Design compromises

▪ Modify TPM semantics

▪ fTPMs offer much better performance than dTPMs



Discussion of SGX Limitations

▪ Lack of trusted storage, secure counters, and clock

▪ Due to fundamental process limitations

▪ Lack of Intel eco-system (unlike ARM):

▪ Intel needs to decide to equip their devices with eMMC

▪ One plus: SGX encrypts memory

▪ No need to worry about memory attacks

▪ One minus: SGX can only run ring-3 code

▪ No secure interrupts available

▪ More concerns about side-channel attacks



This Talk: Two Approaches

1. Software abstractions for mobile devices:

▪ Port TPM (trusted platform module) from PCs to 

smartphones

▪ Trusted sensors

▪ Cloud-TPM: cross-device TPM-protection

2. New systems leveraging trusted hardware

▪ Sentry: protect data against physical attacks

▪ TLR: small secure runtime at the language-level



Sentry: Protecting Data 

on Smartphones & Tablets 

from Memory Attacks

Patrick Colp

U. of British Columbia

Jiawen Zhang

James Gleeson

Sahil Suneja

Eyal de Lara

U. of Toronto

(published at ASPLOS 2015)

Himanshu Raj

Stefan Saroiu

Alec Wolman

Microsoft Research



Smartphones Store Sensitive Data



Smartphones and Tablets Are 

Easily Lost or Stolen



Industry Solution #1: PIN-unlock

Problem: Unencrypted data still resides in RAM!



Industry Solution #2: Disk encryption

Full disk encryption: Protect data-at-rest

Adequate for laptops: Laptops often shutdown/hibernating

Inadequate for smartphones & tablets: These devices are always on



Imagine an attacker has possession of 

a stolen device and can’t guess the PIN

What can they do?



Memory Attacks

▪ Memory attacks allow attacker to gain access to 
sensitive data stored in memory

▪ Three classes of memory attacks:
▪ Cold boot attacks

▪ Bus monitoring attacks

▪ DMA attacks

▪ Common aspect of attacks:
▪ Physical possession of the device is required



▪ With Sentry, memory pages are stored:

▪ Encrypted in DRAM

▪ Decrypted on the ARM SoC (System-on-Chip)

▪ Key observation to reduce overhead

▪ No need to encrypt when device is unlocked

Sentry: Keep Sensitive Data on SoC

encrypt sensitive apps
sensitive apps 
run on-SoC

decrypt-on-demand

Sentry’s Lifecycle

Device
Unlocked

Device
PIN-locked



Outline

▪ Introduction

▪ Memory (RAM) attacks

▪ Threat model

▪ Sentry’s system design

▪ Performance evaluation

▪ Related work & conclusions



Memory Attacks

▪ Three classes of memory attacks:

▪ Cold boot attacks

▪ Bus monitoring attacks

▪ DMA attacks



Cold Boot Attacks

▪ DRAM contents don’t disappear after power cut

▪ Known as the data remanence effect, cooling extends time
[Halderman et al., Usenix Security 2008]

▪ Two types of cold boot attacks

▪ Remove DRAM from device and attach it to a reader

▪ Reflash device with malicious firmware that reads 

(preserved) DRAM

▪ Recently demonstrated

on Android
[Müller et al., ACNS’13]



Modern Tegra3 NVidia Tablet

▪ 1 GB of DRAM, room temperature

▪ Three steps:

1. Write unique 32-bit pattern into device’s DRAM 

2. Mount various cold-boot attacks

3. Measure fraction of bit pattern still preserved

Type of Attack DRAM Preserved

OS Reboot (no power loss) 96.4%

Device Reflash (short power loss) 97.5%

2 Second Reset (long power loss) 0.1%



Bus Monitoring Attacks

▪ Place monitoring device on memory bus 

to record communication

▪ Cannot directly access memory contents, 

but can view all data read from or written to  memory



DMA Attacks

▪ Attach malicious DMA-based peripheral 

to stolen tablet

▪ Dump entire DRAM

▪ Today less prevalent because most smartphones 

and tablets lack DMA ports

▪ But this could change



Outline

▪ Introduction

▪ Memory (RAM) attacks

▪ Threat model

▪ High-level system design

▪ Performance evaluation

▪ Related work & conclusions



Threat Model

▪ In-scope:

▪ Cold boot, bus monitoring, DMA attacks

▪ Out-of-scope:

▪ JTAG attacks

▪ Sophisticated physical attacks

▪ Code-injection attacks

▪ Physical side-channel attacks



Outline

▪ Introduction

▪ Memory (RAM) attacks

▪ Threat model

▪ Sentry’s system design

▪ Performance evaluation

▪ Related work & conclusions



Sentry in Action: Upon Device Lock
D

R
A

M

Page Table

SoC

Limited 
On-SoC

Memory

Encrypted pages
Unencrypted pages
Sensitive app



Sentry in Action: Sensitive Apps Running 

in Background (Locked Device)

D
R

A
M

Page Table

SoC

Limited 
On-SoC

Memory

Encrypted pages
Unencrypted pages
Sensitive app



Sentry in Action: Upon Device Unlock

D
R

A
M

Page Table

SoC

Limited 
On-SoC

Memory

Encrypted pages
Unencrypted pages
Sensitive app



Sentry’s Challenges

1. Where on SoC can code and data be kept?

2. How can crypto be done in-place on the SoC?

3. How do we guarantee no data “leaks” to DRAM?

4. How do we secure freed memory pages?

5. How do we bootstrap?

6. What are minimum on SoC requirements?



Sentry’s Challenges

1. Where on SoC can code and data be kept?

2. How can crypto be done in-place on the SoC?

3. How do we guarantee no data “leaks” to DRAM?

4. How do we secure freed memory pages?

5. How do we bootstrap?

6. What are minimum on SoC requirements?

See ASPLOS 2015 paper for rest of answers



On-SoC Storage

▪ Internal RAM (iRAM)
▪ Some devices ship with small iRAM (e.g., 256 KB)

▪ L2 Cache Locking
▪ ARM cache controllers offer cache locking

▪ Aimed at embedded systems for performance predictability

▪ Safe against cold-boot attacks
▪ Unflashable firmware erases iRAM

▪ Safe against bus monitoring attacks

▪ Safe against DMA attacks
▪ iRAM is DMA-able; need TrustZone-based DMA protections



Outline

▪ Introduction

▪ Memory (RAM) attacks

▪ Threat model

▪ Sentry’s system design

▪ Performance evaluation

▪ Related work & conclusions



Performance & Energy Questions

▪ What is Sentry’s overhead?

▪ Upon locking and unlocking a device

▪ While decrypting on-demand on running apps

▪ When running sensitive app in background

▪ For protecting OS subsystem (dm-crypt)

▪ What is Sentry’s impact to the rest of system?

▪ Portion of L2 cache allocated to Sentry



Performance & Energy Questions

▪ What is Sentry’s overhead?

▪ Upon locking and unlocking a device

▪ While decrypting on-demand on running apps

▪ When running sensitive app in background

▪ For protecting OS subsystem (dm-crypt)

▪ What is Sentry’s impact to the rest of system?

▪ Portion of L2 cache allocated to Sentry



Performance Overhead on Lock

0.7-2.1 seconds overhead per application



Performance Overhead on Unlock

Minimum state required for apps to operate

0.2-1.5 seconds overhead per application



Outline

▪ Introduction

▪ Memory (RAM) attacks

▪ Threat model

▪ Sentry’s system design

▪ Performance evaluation

▪ Related work & conclusions



Related Work

▪ Intel SGX

▪ On-chip AES schemes for x86:

▪ AESSE [Eurosec’10]

▪ TRESOR [Usenix Sec’11]

▪ Encrypted RAM

▪ Cryptkeeper [ICTHS’10]

▪ Encrypt-on-cache-evict [DATE’08]

▪ Cloud-backed encrypt-on-lock

▪ ZIA [Mobicom’02]

▪ Transient Authentication [Mobisys’03]

▪ Clean OS [OSDI’12]



Sentry: Conclusions

▪ Smartphones/tablets are vulnerable to memory 

attacks

▪ Sentry protects these devices by keeping sensitive 

data encrypted in DRAM

▪ ARM offers cache-locking and iRAM to hold 

sensitive data on-SoC



Overall Summary

1. Software abstractions for mobile devices:

▪ Firmware-TPM (trusted platform module)

▪ Trusted sensors

▪ Cloud-TPM: cross-device TPM-protection

2. New systems leveraging trusted hardware

▪ Sentry: protect data against memory attacks

▪ TLR: small secure runtime at the language-level



Questions?

▪ ssaroiu@microsoft.com

83


